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Capacitance of Parallel Rectangular Plates Separated
by a Dielectric Sheet

PETER BENEDEK, STUDENT MEMBER, IEEE, AND P. SILVESTER, MEMBER, IEEE

Abstract—To determine the capacitance between two rectangular
parallel plates separated by a dielectric sheet, the charge distribution
on the plates is formulated in terms of a Fredholm integral equation
of the first kind. This equation is solved numerically by a projective
method using polynomial approximants. The resulting capacitance
values are given in normalized graphical form, permitting capacitance
determination for any practical values of dielectric constant and geo~
metric parameters to within a few percent.

INTRODUCTION

N RECENT YEARS a substantial amount of
I[ literature has become available for microstriplike

and related structures. But even with the increased
use of integrated circuits, there appears to be very little
data for finite plates on dielectric substrates. Reitan
[1] obtained the capacitance of two parallel square
plates ¢n vacuo using the method of subareas. Harring-
ton [2] solved the same problem using a closely related
projection method. Adams and Mautz [3] found the
capacitance of a rectangular dielectric loaded capacitor
by the point-matching method and introduced special

Manuscript received August 3, 1971; revised November 29, 1971,
This work was supported in part by the Communications Research
Centre and by the National Research Council of Canada.

The authors are with the Department of Electrical Engineering,
McGill University, Montreal, Que., Canada.

Fig. 1. (a) Rectangular metal plate on a metal-backed dielectric
substrate. (b) Parallel plate problem, equivalent to (a).

matrix elements to take care of the air-dielectric inter-
face. Farrar and Adams [4] obtained, very recently, the
capacitance of a rectangular section of a microstrip line
by the method of moments with pulse-expansion func-
tions and impulsive weights. They calculate the poten-
tial due to a uniformly charged rectangular plate in
vacuo and then generate the Green’s function as an
infinite series of images.

This paper takes a different approach to the static
capacitance for rectangular thin plates on a metal-
backed dielectric substrate, as shown in Fig. 1(a). To
facilitate the analysis, the equivalent problem, shown in
Fig. 1(b), is considered. [t is well known that the electro-
static behavior of this configuration is governed by
Poisson’s equation subject to Dirichlet boundary condi-
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tions at infinity, i.e.,
—V2¢(x) = p(x)/e
o(x) = 0,

(1
(2)

where ¢ is the electrostatic potential, p is some charge-
density distribution, and x denotes any space point.

This, however, being a three-dimensional exterior
problem, is not well suited to be approached from a
differential equation point of view. Instead, the equiva-
lent integral equation must be obtained via the Green’s
function technique. It can be shown [5] that the inte-
gral equation is of the form

forlxl=oo

6@ = [ e 00 at ®
R

where g(x; £) is the appropriate Green’s function. The
indicated integration is over the whole space, but in fact
it needs to be performed only where the charge density
(&) on the plates is not zero.

Tue GREEN'S FUNCTION
It is well known that the three-dimensional Green's
function for the Laplacian operator in a homogeneous
medium is

glx; &) = “4)

4:71'6' x — El
In the present context, g(x; £) represents the electro-
static potential at a point ¥ due to a unit point charge at

Silvester [6] used the method of images to obtain the
Green's function for the two-dimensional microstrip
problem. He showed that for a point charge at a distance
a from a dielectric sheet of thickness 2%, the image repre-
sentation valid in the dielectric region is as shown in
Fig. 2. This representation is equally valid for three-
dimensional problems. Therefore, the potential at a
point (x, v, 2) with —2 <2<’ due to a unit point charge
1S

1—% &
Vix, 9, 8) = ——2 k"

TEL n=0

i

Vi =)+ (y = yo)2 + [z — @n+ 1Dk — a]?
R1—Fk) 2
— __g*_) Z k‘ln
4'77'51 n=0
1

. 5
VE—x)t+ (v — v+ [+ @n+ D+ a)? )
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Fig.3. (a) Eight-way symmetry for the parallel plates. (b) Positive
quadrant of top plate to be used with Green’s function in (7).

where k= (ey—e)/(eo+e) is the image coefficient. For
a thin plate @ =0, so that the potential in the z=7% plane
is given by
1
V(4nh)? + (& — x0)* + (¥ — ¥0)?
Bl —B) &
_ ( _2 Z o

n=0

11—k
V(x) y) =M_Zk2n

dmwer n—o

dre,

1
.\/[4(% + DA+ (v — x0) + (¥ — 30)?

Now using the inherent eight-way symmetry in the con-
figuration, as shown in Fig. 3(a), the Green’s function is

- (6)

g(x7 Y5 %o, y0>

=Za:5ﬂmfa—w§wﬁw]m
where

sor =+ (52 + (52T
o+ (52 + (5]
o (5 (5T
fors (52 + 9T o

Using Green’s function in (7), with all the image
points built into it, only the positive quadrant of the top
plate needs to be considered, as shown in Fig. 3(b). A
similar Green's function, containing only half the terms
of (6), has recently been obtained by Patel [7] for the
case when the ground plane is at infinity.
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SOLUTION OF THE INTEGRAL EQUATION BY
GALERKIN'S METHOD

Substituting Green’s function from (7) into the in-
tegral equation (3) and integrating over one quadrant
as required by Fig. 3(b),

b a
[7 7 st 3520 30000, ) sy = o - ©
=0 z=0

Note that the three-dimensional boundary-value prob-
lem has been reduced to a two-dimensional integral
equation. The question asked by (9) is, “What charge
distribution a(x, v) 1is required on the plate to produce some
given potential on it?”

Let the quadrant under consideration be discretized
into M smaller rectangles of arbitrary shapes, and
define the solution ¢(x, ¥) and given potential ¢(xo, o)
in the 7th subregion as ¢(x, ¥) and ¢*(xo, ¥o), respec-
tively. Both o? and ¢* are taken to be zero outside the ith
subregion. Therefore,

G’(x, 3’) = Z a'i(x) y)

i=0

(10)

¢(%o, Yo) = ; ¢ (%o, ¥0). (11

In the ith subregion expand oi(x, ¥) in terms of an
n-term linearly independent set of functions {9;i(x, ¥),
j=1,2,---, n}, ie.,

oi(w, y) = 22 vy (x, 9)-

=1

(12)
Substituting (10)—(12) into (9) and defining

b a
G (%0, y0) = f f g(x, v; %o, yo)vi*(x, ¥) dedy (13)
y=0 z=0

we obtain
M n M )
336G (w0, yo) = 22 ¢ (%0, o)- (14)
=1 j=1 i=1

In the kth subregion, introduce a set of # linearly in-
dependent weight functions #*(xo, yo) for projection
purposes. By the Galerkin—Petrov method [10] it is re-
quired that both sides of (14) be projected onto space
spanned by a set of weight functions, such as {tzk(xo,
Vo) } In this process note that the inner product
(¢7(x0, ¥0), L1¥(x0, ¥0)) =0 when 77k, so that the result of
the projection is

M n
> > 654Gy (0, ¥0), (0, y0)) = (@F(%0, Y0), 1 (%0, ¥0)),
i1 j=1

witht =1,2,---,Mandl =1,2,---,n. (13)

This is an M#nX Mn matrix equation that can be
solved for the unknown coefficients ¢;? by any standard
technique. Once the ¢;? are known the charge distribu-
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tion is readily found. Now the total charge on the top
plate can be obtained, and the normalized capacitance
with respect to the bottom plate at —1V is determined
as

qd

C= 16
2€0A ( )

where

g: total charge on the top plate;

A4 area of the top plate;

d =2h=spacing between the top and bottom plates;
€ =8.85X10"12 F/m.

NUMERICAL EVALUATION OF THE INNER PrODUCTS

Consider the typical inner product

(G (%0, ¥0), tF (0, ¥0)) = ffkth ffm] (=, y; 2o, Y0)

region region

.vji(x, y)tlk(xo, yo) dxdydedyO (17)

where g(x, ¥; %o, ¥o) is given in (7). Three cases arise that
need to be examined in some detail.

To perform the integration indicated in (17) when the
integrand contains no singularities, a four-dimensional
Cartesian product rule is used. This involves consider-
ing (17) as an iterated integral and using a Guassian
integration formula in each coordinate direction [8].
Using a three-point Gaussian quadrature formula in
each direction yields 81 quadrature points for the four-
dimensional region. Although in principle fewer points
may be sufficient to integrate four-dimensional com-
plete polynomials of the fifth degree (i.e., all polynomials
x1'xoixstxst such that ¢+4j+k+1<5), the extra points
are not wasted as these permit the exact integration of
all polynomials x1%s%s*x4’ such that 4, j, &, and [<5.

The second case that it is necessary to consider arises
when ¢=~F in (17). In this case the Green’s function con-
tains a singularity. The integral (17) is of the form

d b d b
Yo=¢C ro=a y=c x=q

. v(x, ¥)(%xo, ¥o)
V(= %) + (y — y0)?

dxdydxedy,. (18)

This integration is once again over a hypercube, but
here there is a singularity at x =x, and ¥ =v,. However,
performing two coordinate transformations these singu-
larity regions can be very conveniently reduced to a
point. First, let the order of integration in (18) be
changed to

da d b b
= [
yo=c v y=c zg=a ¥ z=a

. v(xy y)t<x07 yo)
V(x — 20+ (y — y0)°

dxdxo] dydy,. (19)
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Fig. 4.
Now perform the transformation x —xo=p and x +xo=¢
as suggested for the logarithmic singularity [9]. Refer-
ring to Fig. 4(a) and (b) and using the symmetry in Fig.
4(b), &, may be written as
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Fig. 5. Regions of integration for (26).

The integral in (23) can be evaluated by performing the
transformation
p = Rcosb
r = Rsin 6 (25)

and, referring to Fig. 5,
(b—a) sec 0 H(R )
h = f f ——— RdRd9

(d—¢) cse 0H(R )
+ f f = 7 RARdS.  (26)
f=a R=

p+gq —p+q —p+q ?+q
g ) ()]

d d b—a
=[BT
yo=c v y=c =2a+p

A similar procedure can now be repeated in the y—y,
plane to yield

b—a
f fo \/p2
be—p f?d——r
2a-+p v 8=2c4r
where
?p+q r+s> (—p-f—q —-r-l-s>
F = b )
,r09=o(E10 Yo (FE =2
_H(——P-Fq, f+~v>t<;b+q, —r+S>
2 2 2 2
+v(;l7+q, —r-l-s)t(—p-i-q} r+s>
2 2 2 2
+v(_P+q; _H_s)t(P—i_q; ’+S>. (22)
2 2 2 2

The integration indicated by (21) can be performed
if the following integrals can be evaluated:

' f’*"f ~o H(p, 1)
' =0 \/Pz
where

N

q=2a+p s=2¢+r

F(p, 7, q, 5) dsdgdrdp (21)

e drip (23)

(24)

V' + (= 30)?

dqdpJ

-dydy,. (20)

Note that in (26) the singularity is no longer present.
Each integral in (26) can be evaluated using a Cartesian
product of Gaussian quadrature formulas in the R-8
plane. Once the quadrature nodes for (26) are obtained
(24) becomes a definite integral that can be evaluated
by a Cartesian product rule in the s—¢ plane.

The third case to be considered is a pseudosingularity
that takes the form

S N

The integrand here is in fact continuous throughout the
region of integration, but has very large derivatives as
well as values if % is small; straightforward use of Gauss—
Legendre quadratures therefore leads to bounded but
very large error. From the numerical point of view, this
integral is difficult and requires special treatment similar
to true singular integrals. This problem is handled much
the same way as the above singularity. In this case, the.
equation equivalent to (23) is of the form

e e Hp 1)
-

o VETF P
After performing the transformation given in (25)

(%, y)t(%0, Yo)
T=a '\/kz + (x - xo)z + (y - y0)2
-dxdydxodye.  (27)

drdp. (28)
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o= tan (d-c/b-a)

(d-¢)

3k

(b-a) P

Fig. 6. Regions of integration for (29).

and referring to Fig. 6, l» may be written as

% RH(R, 0)
[ D
NE TR
(b—a) sec 8 RH(R 0)
-+ f f dRdb
—ov R=3k \//’a2 + R?

(d—c¢) csc 0 RH(R 0)
+ f f —————— dRdb.
3% \/ k* + R?

To evaluate the first integral in (29), a one-dimen-
sional weighted Gaussian formula was developed with
R/~/E*+ R? as the weight. This ensures that the pseudo-
singular part of the integral is evaluated rather ac-
curately. The second and third integrals in (29) are
nonsingular, and straightforward Cartesian products
were takern.

(29)

RESULTS

A sufficiently large number of computations has been
carried out using the above method to permit determin-
ing, within a small percentage error, the static capaci-
tance of any rectangular plate pair separated by an
infinite dielectric sheet (or, what is equivalent, of any
rectangular plate separated by a dielectric sheet from an
infinite conducting sheet). The results of these calcula-
tions are given in Figs. 7-12.

In Fig. 7, results comparable to those of Reitan [1],
Harrington [2], or Farrar and Adams [4], but consid-
erably more extensive, are shown for two parallel plates
in vacuo. The plates are taken to be thin, of width w,
length I, and separated by a distance d. It will be noted
that the range of w/l shown thus covers all possible
cases: w/l=0 corresponds to infinitely long parallel
strips, while w/l=1 represents a pair of square plates.
Cases with w/l>1 are not excluded, since it is only
necessary to exchange the labeling of the width w and
length I. The parameter in Fig. 7, d/w, has been used in
preference to d/l for two reasons. First, this choice
makes the left-hand endpoints (w/I=0) of all curves
represent strip pairs of a specified width-separation
ratio, directly comparable with the microstrip compu-
tations given earlier [6]. Secondly, it has been found
that Figs. 8-12 are rendered most easily legible by this
choice. The capacitance values themselves have been
normalized to the capacitance of a similar pair of plates,
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Fig. 7. Normalized capacitance against ground plane Ch/esA versus
plate width-to-length ratio w// for plate spacing-to-width ratios
d/w=10.0, 4.0, 2.0, 1.0, 0.75, 0.5, and 0.25 and relative dielectric
constant e, =1. 0
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Fig. 8. Effective filling factor n versus width-to-length ratio w/I for
plate spacing-to-width ratios d/w=10.0, 4.0, 2.0, 1.0, 0.75, 0.5,
0.25 and relative dielectric constant e, =725.

calculated on the assumption that the electric flux lines
pass straight across from plate to plate (the “infinite
parallel plate” assumption).

If a dielectric sheet of relative permittivity e. is in-
serted between the parallel plates, the capacitance rises
from its original free-space value Cy; to some higher
value C. This value, however, is always lower than the
value C, that would be achieved by filling all space with
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Fig. 10. Same as Fig. 8 with ¢ =9.0.

dielectric of permittivity ¢. One may define effective
filling factor n as the ratio of capacitance with dielectric
sheet in place to capacitance obtained in a space of
homogeneous relative permittivity e,:

n = C/C,. (30)
Since C,=¢.Cy, the actual capacitance C can be found
from

C = nerCO (31)

provided % is known.
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Fig. 11. Same as Fig. 8 with ¢.=16.0.
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Fig. 12. Same as Fig. 8 with & =51.0.

Values of the effective filling factor 5 are given in
Figs. 8-12 for ¢,=2.5, 4.2, 9, 16, 51; these choices are
appropriate to some of the commonly employed dielec-
tric materials. While 7 is obviously dependent on ¢, as
well as on the geometric parameters, its variation with
€- is not very rapid. Therefore, very little accuracy is
lost by, for example, using Fig. 11 for all 14<¢ <18
without modification or correction.

If capacitance values are required for relative per-
mittivities not close to one of the tabulated values,
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linear interpolation has been found quite effective. As
an extreme example, suppose w/l=0.4, d/w=0.5, and
¢ =4.2. Using Fig. 9 one obtains 7=0.772. Were this
curve not available, it would be necessary to interpolate
between Fig. 8 (from which =0.822) and Fig. 10
(n=0.731). The interpolation yields n =0.798 in error by
less than four percent, despite the very large range of
relative permittivities spanned by the interpolation.
Various numerical tests have shown that interpolation
between adjacent pairs of computed curves ordinarily
yields errors of about one percent and occasionally two
percent. It is believed that this accuracy level is entirely
adequate for practical work, where neither permittivities
nor geometric parameters are likely to be known much
more accurately.

Experimental measurements were performed on five
rectangular plates on a dielectric substrate of ¢, =3.26.
The results agree with the calculated values to within
the experimental error.

CONCLUSION

A new projective method has been presented in this
paper for the calculation of self and mutual capacitances
of flat conductor sections attached to dielectric sub-
strates. The computing times achievable by this method
have been found sufficiently short to permit presenta-
tion of a set of universal curves, from which the capaci-
tance of a pair of rectangular plates separated by a
dielectric sheet or of a single plate on a conductively
backed substrate may be found within a few percent.
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The method itself is capable of substantially wider ap-
plication and will be used in the future for solving a
variety of other related problems.
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