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Parallel Rectangular Plates Separated

by a Dielectric Sheet

STUDENT MEMBER, IEEE, AND P. SILVESTER, ~MBER, IEEE

Abstract—To determine the capacitance between two rectangular

parallel plates separated by a dielectric sheet, the charge distribution
on the plates is formulated in terms of a Fredholm integral equation

of the first kind. This equation is solved numerically by a projective

method using polynomial approximants. The resulting capacitance
values are given in norma~zed graphical form, permitting capacitance

determination for any practical values of dielectric constant and geo-
metric parameters to within a few percent.

INTRODUCTION

I

N RECENT YEARS a substantial amount of

literature has become available for microstriplike

and related structures. But even with the increased

use of integrated circuits, there appears to be very little

data for finite plates on dielectric substrates. Reitan

[I] obtained the capacitance of two parallel square

plates in vacuo using the method of subareas. Barring-

ton [2] solved the same problem using a closely related

projection method. Adams and Mautz [3] found the

capacitance of a rectangular dielectric loaded capacitor

by the point-matching method and introduced special
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Fig. 1. (a) Rectangular metal plate on a metal-backed dielectric
substrate. (b) Parallel plate problem, equivalent to (a).

matrix elements to take care of the air–dielectric inter-

face. Farrar and Adams [4] obtained, very recently, the

capacitance of a rectangular section of a microstrip line

by the method of moments with pulse-expansion func-

tions and impulsive weights. They calculate the poten-

tial due to a uniformly charged rectangular plate in

vacuo and then generate the Green’s function as an

infinite series of images.

This paper takes a different approach to the static

capacitance for rectangular thin plates on a metal-

backed dielectric substrate, as shown in Fig. 1 (a). To

facilitate the analysis, the equivalent problem, shown in

Fig. 1 (b), is considered. It is well known that the electro-

static behavior of this configuration is governed by

Poisson’s equation subject to Dirichlet boundary condi-
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Fig. 2. Image representation valid in the dielectric region

for a unit point charge near a dielectric sheet.

tions at infinity, i.e.,

–v’@(x) = p(x)/E (1)

(#@)=0, forlxl=m (2)

where~ is the electrostatic potential, p is some charge-

density distribution, and x denotes any space point.

This, however, being a three-dimensional exterior

problem, is not well suited to be approached from a

differential equation point of view. Instead, the equiva-

lent integral equation must be obtained via the Green’s

function technique. It can be shown [5] that the inte-

gral equation is of the form

@(x) =
s

g(~; M<) dt (3)
R

where g(x; ~) is the appropriate Green’s function. The

indicated integration is over the whole space, but in fact

it needs to be performed only where the charge density

u($) on the plates is not zero.

THE GREEN’S FUNCTION

It is well known that the three-dimensional Green’s

function for the Laplacian operator in a homogeneous

medium is

1
g(x; <) = (4)

lkr,[x-t~”

In the present context, g(x; $) represents the electro-

static potential at a point x due to a unit point charge at

t.

Silvester [6] used the method of images to obtain the

Green’s function for the two-dimensional microstrip

problem. He showed that for a point charge at a distance

a from a dielectric sheet of thickness 2k, the image repre-

sentation valid in the dielectric region is as shown in

Fig. 2. This representation is equally valid for three-

dimensional problems. Therefore, the potential at a

point (x, y, z) with —k <z S h due to a unit point charge

is

l–k m
V(*7 y, 2) =

km, .5 ‘2”

1

“v’(x – XO)2+ (y – yO)2+ [z – (4n + l)h – a]z
●

— ‘(;jlk) ~ k’”
.= o

1
(5)

“v’(x – *0)’+ (y – y0)2 + [z+ (4}2 + 3)k + a]’

(b)

Fig. 3. (a) Eight-way symmetry for the parallel plates. (b) Positive
quadrant of top plate to be used with Green’s function in (7).

where k = (q —cJ /(eO +eJ is the image coefficient. For

a thin plate a = O, so that the potential in the z = h plane

is given by

1
. (6)

“<[4(% + I)/z]’ + (x – XO)2 + (y – yo)z

Now using the inherent eight-way symmetry in the con-

figuration, as shown in Fig. 3(a), the Green’s function is

d% Y; % Yo)

1
—_—

[
f(0) – (1 – k) jj kn-~(n)

27r(ql + ~l)k 1(7)n=1
where

[ (%3’+(%’1”2f(n) = (2?’2)2 +

‘[(’”)’ + (%?’+ (%’11’2

‘[(2”)2 + (%9+( %2)’11”

‘[@”)2 + (%’+ r+)’]’” ‘8)

Using Green’s function in (7), with all the image

points built into it, only the positive quadrant of the top

plate needs to be considered, as shown in Fig. 3(b). A

similar Green’s function, containing only half the terms

of (6), has recently been obtained by Patel [7] for the

case when the ground plane is at infinity.
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SOLUTION OF THE INTEGRAL EQUATION BY

GALERKIN’S METHOD

Substituting Green’s function from (7) into the in-

tegral equation (3) and integrating over one quadrant

as required by Fig. 3(b),

baSsd%Y;%Yo)+% Y) d*@ = ~(xo, Yo). (9)
~=o z= o

Note that the three-dimensional boundary-value prob-

lem has been reduced to a two-dimensional integral

equation. The question asked by (9) is, “ Wkat charge

distr~bution u(x, y) h required on the ~late to produce some

given potential on it?”

Let the quadrant under consideration be discretized

into M smaller rectangles of arbitrary shapes, and

define the solution a(x, Y) and given potential @(~o, YO)

in the ith subregion as Ui(x, y) and @i(*o, yo), respec-

tively. Both Ui afid oi are taken to be zero outside the ith

subregion. Therefore,

U(x, y) = 5 Uyx, y) (lo)
‘i=o

4(X0, yo) = 5 @i(xo, Ye). (11)
$=1

In the ith subregion expand a;(x, y) in terms of an

n-term linearly independent set of functions { Vii(x, y),

j=l, z,..., n}, i.e.,

Substituting (10)–(1 2) into (9) and defining

ba

Gji(xo, Yo) = Ssg(x, y; $0, yo)~ii(% Y)
y=o Z=ll

we obtain

(12)

dxdy (13)

~ ,~ C~iG~i(XO, Yo) = &@(Xo, jfo).
(14)

In the kth subregion, introduce a set of n linearly in-

dependent weight functions t? (*o, YO) for Projection

purposes. By the Galerkin–Petrov method [10] it is re-

quired that both sides of (14) be projected onto space

spanned by a set of weight functions, such as { tth(xo,

YO) ]. In this process note that the inner product

(@lxo, YO), tt’(xo, YO)) = O when { #k, so that the result of

the projection is

s& c$(G’(zo> Yo)>hk(xo, Ye)) = (@(xo, Yo), ~Zk(XO,Ye)),
‘kl j=l

withk=l, 2,. .”, Mandl= 1,2, ”””, n. (15)

This is an il!ln X iMn matrix equation that can be

solved for the unknown coefficients cji by any standard

technique. Once the Cii are known the charge distribu-

tion is readily found. Now the total charge on the top

plate can be obtained, and the normalized capacitance

with respect to the bottom plate at — 1 V is determined

as

q,d
c=—

2EOA
(16)

where

q~ total charge on the top plate;

A area of the top plate;

d = 2h = spacing between the top and bottom plates;

Eo = 8.85X10-12 F/m.

NUMERICAL EVALUATION OF THE INNER PRODUCTS

Consider the typical inner product

(Gji(xo, Yo), tt%o, Ye)) =
sLh U#th

region region

d% Y; *O, Yo)

“ fl$(~, y)h%o, yo) dxdydxodyo (17)

where g(x, y; %., yo) is given in (7). Three cases arise that

need to be examined in some detail.

To perform the integration indicated in (17) when the

integrand contains no singularities, a four-dimensional

Cartesian product rule is used. This involves consider-

ing (17) as an iterated integral and using a Guassian

integration formula in each coordinate direction [8].

Using a three-point Gaussian quadrature formula in

each direction yields 81 quadrature points for the four-

dimensional region. Although in principle fewer points

may be sufficient to integrate four-dimensional com-

plete polynomials of the fifth degree (i.e., all polynomials

xl~xa~xt%~t such that i +j +k +1 S 5), the extra points

are not wasted as these permit the exact integration of

all polynomials Xl%2%kX4Z such that i, .j, k, and Zs 5.

The second case that it is necessary to consider arises

when i = k in (17). In this case the Green’s function con-

tains a singularity. The integral (17) is of the form

‘1= J:=.l:=.l:ci:a

~(% Y)t(xo, Yo)
dxdydxodyo. (18)

“<(x – Xo)’ + (y – ye)’

This integration is once again over a hypercube, but

here there is a singularity at x = xo and y = YO. However,

performing two coordinate transformations these singu-

larity regions can be very conveniently reduced to a

point. First, let the order of integration in (18) be

changed to

‘,= ~:=.l:c[~:=f:

d% Y)(XO, Yo)

1
dxdxo dydy,. (19)

“W(X – Xo)’ + (y – ye)’
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Fig.5. Regions ofintegration for (26).

D(a-b, a+b} B(b-a,b+al

The integral in (23) can be evaluated by performing the

transformation

P f= Rcos O

(b) r= Rsin O (25)

Fig. 4. (a) Region under consideration in X-XO plane. (b)
Transformed region in the p–g plane.

and, referring to Fig. 5,

Ss

a (b-a) se. 0 H(R, ,9)

Now perform the transformation x –x, =@ and x+x, =g “ =
RdRdf3

R
as suggested for the logarithmic singularity [9]. Refer-

0=o RSO

ring to Fig. 4(a) and (b) and using the symmetry in Fig.
(~–.) .s. @~(R, o)

4(b), 11 may be written as
+ ~ “z~ R RdRdO. (26)

O=a RCO

.—

– “:” ‘O)+’(-’:’’’)’(?’‘0) ]
“=H/:c[:f=:f:p‘f’:q’’)’(tit’ + (Y – ‘0)2

dqdt

A similar procedure can now be repeated in the y–y.

plane to yield

b-a d–o

11=~ Ss 1

4 .=O ,=0 dp’ + r’

Zb-p
“s s

‘d–r

F(P7 r, q, S)dsdqdrdp (21)
q=2a+p8=ZC+T

where

‘(’r’s)=vf+’%)’(+ ’+)

(–p+’ ?-+s

)(

p+’ –?-+s
+vT, TtT, T

)

(

~v P+q –r+s ~ –@+q r+s

2’2 )( )

+V
( F’%(+% ’22)

The integration indicated by (21) can be performed

if the following integrals can be evaluated:

&a

Ss ‘-’ II(p, r)
11 = d~dt

,=0 ~p’ + r’
(23)

*=0

where Zb-p
~=’a+=s

2d—r
H(P,r) = F(t, r, q, S)dsdq. (24)

S=’c+r

. dydyo. (20)

Note that in (26) the singularity is no longer present.

Each integral in (26) can be evaluated using a Cartesian”

product of Gaussian quadrature formulas in the R–O’

plane. Once the quadrature nodes for (26) are obtained

(24) becomes a definite integral that can be evaluated

by a Cartesian product rule in the s–q plane.

The third case to be considered is a pseudosingularity

that takes the form

‘2= l:.J:*l:CI:<,’+ ;Y:Y:$;Y;:-YOT

.dxdydxodyo. (27)

The integrand here is in fact continuous throughout the

region of integration, but has very large derivatives as

well as values if k is small; straightforward use of Gauss–

Legendre quadrature therefore leads to bounded but

very large error. From the numerical point of view, this

integral is difficult and requires special treatment similar

to true singular integrals. This problem is handled much

the same way as the above singularity. In this case, the

equation equivalent to (23) is of the form

>GSsd–c H(p, r)
1’ =

p=o T-O ~k’ + p’+ r, drdp-

After performing the transformation given

,,

(28)

in (25)
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Fig.6, Regions of integration for (29).

and referring to Fig. 6, 12may be written as

Sf7r/23kRH(R,0 ~R~o
12 =

9=0 E=O~lk2 + R2

(b-.) seed ~H(R,f))
+f” J dRdO

3=0 R=3k ~k2 + R’

00 0.5 1.0
(d–c) csc 8 R~(R, f))

+ J“’2J
~k2 + R’

dRdO. (29) WI1
0=. R=3k

Fig. 7. Normalized capacitance against ground plane Ck/ed versus
plate width-to-length ratio w/1 for plate spacing-to-width ratios
d/w= 10.0, 4.0, 2.0, 1.0, 0.75, 0.5, and 0.25 and relative dielectricTo evaluate the first integral in (29), a one-dimen-

sional weighted Gaussian formula was developed with

R/~kZ+RZ as the weight. This ensures that the pseudo-

singular part of the integral is evaluated rather ac-

curately. The second and third integrals in (29) are

nonsingular, and straightforward Cartesian products

were taken.

RESULTS

A sufficiently large number of computations has been

carried out using the above method to permit determin-

ing, within a small percentage error, the static capaci-

tance of any rectangular plate pair separated by an

infinite dielectric sheet (or, what is equivalent, of any

rectangular plate separated by a dielectric sheet from an

infinite conducting sheet). The results of these calcula-

tions are given in Figs. 7–12.

In Fig. 7, results comparable to those of Reitan [1],

Harrington [2], or Farrar and Adams [4], but consid-

erably more extensive, are shown for two parallel plates

in vacuo. The plates are taken to be thin, of width w,

length 1, and separated by a distanced. It will be noted

that the range of w/1 shown thus covers all possible

cases: w/1 = O corresponds to infinitely long parallel

strips, while w/J = 1 represents a pair of square plates.

Cases with w/1 >1 are not excluded, since it is only

necessary to exchange the labeling of the width w and

length 1. The parameter in Fig. 7, d/w, has been used in

preference to d/1 for two reasons. First, this choice

makes the left-hand endpoints (w/l = O) of all curves

represent strip pairs of a specified width-separation

ratio, directly comparable with the microstrip compu-

tations given earlier [6]. Secondly, it has been found

that Figs. 8–12 are rendered most easily legible by this

choice. The capacitance values themselves have been

normalized to the ca~acitance of a similar Dair of rdates.

constant 6. = 1.0.

, ( I 1 1 1 r

0.95

0.90

0.85
F-4

075

070

0.65

0.0 05 1.0

WI 1

Fig. 8. Effective filling factor T versus width-to-length ratio w/1 for
plate spacing-t~width ratios d/w= 10.0, 4.0, 2.0, 1.0, 0.75, 0.5,
0.25 and relative dielectric constant G =2.5.

calculated on the assumption that the electric flux lines

pass straight across from plate to plate (the “infinite

parallel plate” assumption).

If a dielectric sheet of relative permittivity .s, is in-

serted between the parallel plates, the capacitance rises

from its original free-space value CO to some higher

value C. This value, however, is always lower than the

value C. that would be achieved bv filling all s~ace wi *h. . .> . “ . . . .
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Fig.9. Same as Fig. 8withe, =4.2.
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Fig. 10. Same as Fig. 8withe, =9.O.
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Fig. 11. Same as Fig. 8withe, =16.O.
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Fig. 12. Same as Fig. 8withe, =51.O.

dielectric of permittivity ~,. One may define effective

jilling factor q as the ratio of capacitance with dielectric

sheet in place to capacitance obtained in a space of

homogeneous relative permittivity e,:

q = c/cT. (30)

Since C,=E,CO, the actual capacitance Ccan be found

from

c = ?lGco (31)

provided q is known,

Values of the effective filling factor q are given in

Figs. 8–12 for e,=2.5, 4.2, 9, 16, 51; these choices are

appropriate to some of the commonly employed dielect-

ric materials. While q is obviously dependent on e,, as

well as on the geometric parameters, its variation with

c. is not very rapid. Therefore, very little accuracy is

lost by, for example, using Fig. 11 for all 14 <c,<; 18

without modification or correction.

If capacitance values are required for relative per-

mittivities not close to one of the tabulated values,
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linear interpolation has been found quite effective. As

an extreme example, suppose w/1=0.4, d/w= 0.5, and

e, =4.2. Using Fig. 9 one obtains q = 0.772. Were this

curve not available, it would be necessary to interpolate

between Fig. 8 (from which q = 0.822) and Fig. 10

(q= 0.731). The interpolation yields q =0.798 in error by

less than four percent, despite the very large range of

relative permittivities spanned by the interpolation.

Various numerical tests have shown that interpolation

between adjacent pairs of computed curves ordinarily

yields errors of about one percent and occasionally two

percent. It is believed that this accuracy level is entirely

adequate for practical work, where neither permittivities

nor geometric parameters are likely to be known much

more accurately.

Experimental measurements were performed on five

rectangular plates on a dielectric substrate of t,= 3.26.

The results agree with the calculated

the experimental error.

CONCLUSION

A new projective method has been

values to within

presented in this

paper for the “calculation of self and mutual capacitances

of flat conductor sections attached to dielectric sub-

strates. The computing times achievable by this method

have been found sufficiently short to permit presenta-

tion of a set of universal curves, from which the capaci-

tance of a pair of rectangular plates separated by a

dielectric sheet or of a single plate on a conductively

backed substrate may be found within a few percent.

The method itself is capable of substantially wider ap-

plication and will be used in the future for solving a

variety of other related problems.
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